
  

Graph Theory
Part Two



  

Outline for Today

● Walks, Paths, and Reachability
● Walking around a graph.

● Application: Local Area Networks
● Graphs meet computer networking.

● Trees
● A fundamental class of graphs.



  

Recap from Last Time



  

Graphs and Digraphs

● A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs of nodes. If

{u, v} ∈ E, then there’s an edge from u to v.

● A digraph is a pair G = (V, E) of a set of
nodes V and set of directed edges E.
● Each edge is represented as the ordered pair

(u, v) indicating an edge from u to v.
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Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if

they're linked by an edge.
● Formally speaking, we say that two

nodes u, v ∈ V are adjacent if we have
{u, v} ∈ E.

● There isn’t an analogous notion for
directed graphs. We usually just say
“there’s an edge from u to v” as a way of
reading (u, v) ∈ E aloud.



  

New Stuf!



  

Walks, Paths, and Reachability
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Fun Facts

● Here’s a collection of useful facts about graphs that you can
take as a given.

● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is a
path from u to v if and only if there’s a walk from u to v.

● Theorem: If G is a graph and C is a cycle in G, then C’s length
is at least three and C contains at least three nodes.

● Theorem: If G = (V, E) is a graph, then every node in V 
belongs to exactly one connected component of G.

● Theorem: If G = (V, E) is a graph, then G is not connected if
and only if G has two or more connected components.

● Looking for more practice working with formal defnitions?
Prove these results!



  

Application: Local Area Networks



  

The Internet and LANs

● The internet consists of several separate local
area networks (LANs) that are
“internetworked” together.

● Local area networks cover small areas – a
single hallway in a dorm, an ofice building, a
college campus, etc.

● The internet then links those smaller LANs into
one giant network where everyone can talk to
everyone.

● Focus for today: How do messages fow
through a LAN?



  



  



  



  

Message Movement

● When a computer
receives a message,
it repeats that
message on all its
links except the one
it received the
message on.

● The computers don’t
inspect the message
contents or try to be
clever – it’s purely
“came in on link X,
goes out on all links
but X.”



  



  



  

Two Pitfalls



  

The network graph
must be connected.
The network graph
must be connected.
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Broadcast Storms

● A broadcast storm occurs when there’s a
cycle in the network graph.

● A single message can repeat forever, or
exponentially amplify until the network fails.

● Solution: Don’t let the network graph have
any cycles.

● A graph G = (V, E) is acyclic if it has no cycles.
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You have a collection of computers
that need to be wired up into a LAN.
How should you choose the shape of

the network?



  

CTO CFO CEOCOO
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No Cycles

Fewest Links,
Connected

Most Links,
No Cycles
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Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects

its endpoints.)

$

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties

is called a tree.
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Trees

● Theorem: Let T = (V, E) be a graph. The
following are equivalent:
● T is connected and acyclic. (CTO perspective.)
● T is maximally acyclic: T has no cycles, and

adding any missing edge {x, y} creates a cycle.
(COO perspective.)

● T is minimally connected: T is connected, and
deleting any edge {x, y} from T disconnects x 
from y. (CFO perspective.)

● A graph meeting any of these three sets of
requirements is called a tree.



  

Theorem: Let T = (V, E) be a graph. If T is connected and
acyclic, then T is maximally acyclic.

Proof: Assume T is connected and has no cycles. We need to
prove that T is maximally acyclic. We already know that T
is acyclic. So choose any nodes x, y ∈ V where {x, y} ∉ E;
we’ll prove that adding {x, y} to E closes a cycle.

Because T is connected, there is a path x, …, y from x to y 
in T. Now add {x, y} to E. Then we can form the closed
walk x, …, y, x. We claim that this is a cycle. To see this,
note the following:

No node is repeated except the start/end node x: nodes
x, …, y are all distinct because x, …, y is a path.

No edge appears twice: none of the edges used in
x, …, y are repeated (x, …, y is a path). Furthermore,
the edge {x, y} isn’t repeated since the path x, …, y 
was formed before {x, y} was added to E.

Thus adding {x, y} to E closes a cycle, as required. ■
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Check the appendix for the
other two steps of the proof.



  

More to Explore

● A tree kind of seems like a bad way to design a
network. (Why?)

● Actual local area networks allow for cycles.
They use something called the spanning tree
protocol (STP) to selectively disable links to
form a tree.

● Routing through the full internet – not just
within a LAN – is a fascinating topic in its own
right.

● Take CS144 (networking) for details!



  

Recap from Today

● Walks and closed walks represent ways
of moving around a graph. Paths and
cycles are “redundancy-free” walks and
cycles.

● Trees are graphs that are connected and
acyclic. They’re also minimally-connected
graphs and maximally-acyclic graphs.

● Trees have applications throughout CS,
including networking.



  

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

● A Little Movie Puzzle
● Who watched what?



  

Appendix





  

Theorem: Let T = (V, E) be a graph. If T is minimally
connected, then T is connected and acyclic.

Proof: Assume T is minimally connected. We need to show that 
T is connected and acyclic. Since T is minimally connected,
it’s connected, and so we just need to show that T is acyclic.

Suppose for the sake of contradiction that T contains a cycle
x, …, y, x. Note in particular that this means x, …, y is a path
in T and that this path does not use the edge {x, y}.

Since T is minimally connected, deleting the edge {x, y}
from T makes y not reachable from x. However, we said
earlier that x, …, y is a path from x to y in T that does not
use {x, y}, so x and y remain reachable after deleting {x, y}.

We have reached a contradiction, so our assumption was
wrong and T is acyclic. ■
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a path from x to y. Consider two cases:

Case 1: {x, y} ∈ E. Then x, y is a path from x to y.

Case 2: {x, y} ∉ E. Imagine adding {x, y} to E. Since T is
maximally acyclic, this closes a cycle x, …, y, x passing
through {x, y}. Then x, …, y is a path in T from x to y.

In either case, we have a path from x to y, as needed.

Next, suppose for the sake of contradiction that there is an
edge {x, y} ∈ E where T remains connected after deleting
{x, y}. This means that there is a path x, …, y in T after
removing {x, y}. By adding {x, y} to the end of the path, we
form a cycle x, …, y, x is a cycle in T. This is impossible
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